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ABSTRACT

Learning a model for sequential prediction of symbolic
music remains an open challenge. An important special
case is the prediction of pitch sequences based on a corpus
of monophonic music. We contribute to this line of re-
search in two respects: (1) Our models improve the state-
of-the-art performance. (2) Our method affords learning
interpretable models by discovering an explicit set of rele-
vant features. We discover features using the PuLse learn-
ing framework, which repetitively suggests new candi-
date features using a generative operation and selects fea-
tures while optimizing the underlying model. Defining a
domain-specific generative operation allows to combine
multiple music-theoretically motivated features in a uni-
fied model and to control their interaction on a fine-grained
level. We evaluate our models on a set of benchmark cor-
pora of monophonic chorales and folk songs, outperform-
ing previous work. Finally, we discuss the characteristics
of the discovered features from a musicological perspec-
tive, giving concrete examples.

1. INTRODUCTION

Predictive processing and the formation of expectancies
are core capacities of human cognition, that are closely
tied to the perception and interaction with our environment
and to survival and fitness in an evolutionary perspective.
Apart from its role in most cognitive domains, predictive
processing has also been understood to play a fundamental
role in music perception [22, 29]. The formation of musi-
cal expectancies is essential for goal directed processes at
different musical time-scales, for musical interaction and
synchronization as well as for the play with emotional ef-
fects in music [10, 17], and particularly, musical tension
[8, 13]. Musical expectancy has also been understood to be
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culture- and style-dependent and to be grounded in musical
knowledge that is acquired through processes of implicit or
statistical learning [10, 31, 32]. Modeling of human pre-
dictive processing in music is thus fundamental for com-
putational cognitive models of music as well as for models
of musical interaction or generation.

Musical expectancy has been studied in terms of
melody, harmony and rhythm. While the task involves the
prediction of the next note, onset, chord or combinations
thereof given the past events in the sequence, there are
many different types of underlying models one can posit
to compute predictions and event probabilities. While the
setting of predicting the next event is difficult to define ac-
curately and to tackle in the general case of polyphonic
music, many past approaches have simplified the problem
to tackle a single stream of events, such as melodic notes
or chord events. Because this context is similar to the lin-
guistic case, one frequent approach has been to take into
account language models as commonly used in computa-
tional linguistics, particularly, n-gram models and derived
models, which are discussed in Sec. 1.1. More recently,
connectionist models have also become increasingly pop-
ular, as discussed in Sec. 1.3.

Apart from n-gram and connectionist models musical
expectancy and melodic structure have been modelled by
other kinds of approaches that we do not discuss in de-
tail. These involve, most notably, hidden Markov models
for melodic structure (e.g. [15, 16]) and dynamic Bayesian
networks (e.g. [19, 20, 27]). More generally, a large variety
of latent structure models beyond Markovian approaches
may be adequate to characterize prediction and to compute
sequential event probabilities.

1.1 n-gram Models

Markovian and similar approaches have been applied since
decades for the modeling of music (see [22] for a review).
n-gram models track the number of times a particular con-
tiguous sub-sequence of events occurs in the data. In sim-
ple n-gram models the predictive distribution is computed
by normalizing these frequency counts for a fixed context
length n. Such n-gram models have been applied particu-
larly in the modelling of melody [5, 21, 24] and harmony



[26, 30, 33, 36, 37], classification [4, 9], or applications
such as style description or identification [18, 28].

A major problem with this approach is that short context
lengths are unable to capture longer patterns while longer
context lengths overfit on the training data by assigning
zero probability to unseen sequences. Two common meth-
ods to overcome this problem are (1) escaping strategies,
which explicitly assign non-zero weights to unseen se-
quences and (2) smoothing methods, which combine mul-
tiple n-gram models of different, possibly unbounded con-
text length (see [24] for an extensive overview).

Extending common n-gram models, Conklin and Wit-
ten [5] proposed the notion of multiple viewpoint sys-
tems, which combine n-gram models over different basic
and derived features in order to improve melodic predic-
tion taking into account correlations between different fea-
tures. Pearce [21] extended this idea forming the basis
of IDyOM, a cognitive model of melodic prediction and
generation, which was evaluated with human psychologi-
cal data [23].

1.2 Long-Term and Short-Term Model

Conklin and Witten [5] proposed the distinction between
a long-term model (LTM) and a short-term model (STM).
The LTM is trained on a corpus of data and is supposed
to capture piece-independent characteristics of the corre-
sponding style, epoch, or genre. The STM, on the other
hand, is supposed to capture properties of a single piece
like motives or repetitions and is trained online at predic-
tion time for each piece separately. LTM and STM are
combined at prediction time (see Sec. 2.6 for details).

1.3 RTDRBM (Connectionist Models)

Recently, Cherla et al. [3] used a recurrent temporal dis-
criminative restricted Boltzmann machine (RTDRBM) as
LTM, improving over the to-date best performing n-gram
LTMs. RTDRBM are state-full connectionist models sim-
ilar to recurrent neural networks (RNNs), which have the
potential to capture long-term dependencies in time series
data. This renders them particularly suited for the LTM.

2. THE PuLse FRAMEWORK FOR MUSIC

We employ the PuLse learning framework [14] for discov-
ering relevant musical features. PuLse performs a guided
search through an infinitely large feature space and thereby
allows to discover features in spaces that are too large
for classical feature selection approaches. In doing so,
Putsk iteratively performs (forward) feature expansion and
(backward) feature selection, resulting in a framework sim-
ilar to evolutionary algorithms. We will first describe the
general principles of discovering features with PuLsE in
Sec. 2.1 before going into details about our specific im-
plementation.

2.1 Discovering Features with PuLse

Purse addresses the ubiquitous machine learning problem
that, on the one hand, we need to include task-specific prior

knowledge to efficiently solve a learning task but, on the
other hand, explicitly specifying a set of features might
neither be possible nor desirable for a number of reasons:
(a) We may lack the explicit knowledge required to spec-
ify good features. (b) The specified features may be too
specific and “overfit” on a single problem instance. (c) Ex-
plicitly specifying features is tedious work to be done by
experts, which we might want to automate.

More precisely, instead of explicitly specifying features,
in PuLse we specify a generative operation N1 that sug-
gests new candidate features based on the current feature
set. N1 may inject new features as well as mutate and
recombine existing features, analogous to an evolutionary
algorithm. After expanding the feature set by including all
candidate features suggested by the Nt operation, PULSE
shrinks the feature set by optimizing the underlying model
and selecting features based on the model performance.
Again this is akin to evolutionary algorithms with the dif-
ference that PuLse defines an objective based on the whole
feature set and features are thus not scored individually but
selected based on how much they contribute to the fitness
of the whole population. For learning an optimal set of fea-
tures and parameters, PuLSE repetitively expands the fea-
ture set by applying N T and selects a subset of features by
optimizing the model parameters © and removing features
with zero weight.

As the underlying model, PuLse uses a conditional ran-
dom field [12], which defines a conditional probability dis-
tribution p(z|y) as
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where y € ) is known at prediction time, z € X is to be
predicted, F is the set of features with weights © = {0 €
R| f € F}, and the partition function Z(y) ensures correct
normalization of the conditional distribution. The features
f € F may be arbitrary real-valued functions of x and y,
f: X xY — R. When modeling sequential data, x € X
is the next event, y € )Y = X* is the sequence of past
events, and X is called the symbol space or the alphabet.
The parameters are optimized by performing (stochastic)
gradient descent on the negative log-likelihood of the data

(©;D) == logp(zly) + p(©) , 3)

(z,y)eD

where p(©) comprises any regularization terms, most no-
tably an L;-regularization to enforce a sparse feature set.
Note that since p implements a prior over the model pa-
rameters, specifying additional regularization terms is an-
other means to inject task-specific knowledge in addition
to NT (also see Sec. 2.5). For optimization we use Ada-
Grad [7] combined with the approach described by Tsu-
ruoka, Jun’ichi Tsujii, and Ananiadou [35] for implement-
ing the Lq-regularization. We will interchangeably speak
of maximizing the data likelihood or minimizing the model
cross-entropy as both objectives are equivalent.
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Figure 1. Visualization of generalized n-gram features
constructed from three different viewpoints with basis fea-
tures (top row), a classical n-gram feature (middle row),
and a generalized n-gram feature (bottom row). See text
for detailed explanation.

We use PuLske to discover two kinds of features: View-
point features (Sec. 2.2), which generalize the concept of
classical n-grams, and Anchor features (Sec. 2.3), which
incorporate the concepts of tonic and mode (key) that is
common in tonal music.

2.2 Viewpoint Features

Viewpoint or n-gram features indicate the presence of a
specific sequence of events. Compared to classical n-
grams, the approach described in the following defines a
more general set of features, namely ones that also in-
clude partial sequences (i.e. sequences with “holes”) and
sequences that mix different viewpoints. We sometimes
differentiate between these generalized and classical non-
generalized n-gram features.

Any viewpoint £ implies a particular alphabet X¢. We
define an associated set of basis features B¢ such that fea-
ture b, 4)(s) € B indicates whether symbol z € X oc-
curred at time T'—t in the given sequence s € X" of length
T. The feature b, ;) thus looks ¢ steps into the past, indi-
cating the occurrence of event x at that time, with b, )
referring to the next event to be predicted. In the upper
part of Tab. 1 we list all viewpoints that we used for con-
structing n-gram features.

Picking up on the construction method suggested in [14]
we construct more complex features via logical conjunc-
tion of multiple basis features. Features constructed in this
way are more general than classical n-grams in two re-
spects: (1) They do not necessarily contain a contiguous
sequence of basis features, which allows to generalize over
events at a specific time by leaving a “hole”. (2) They may
be composed of basis features derived from different al-
phabets/viewpoints, which allows to define a specific com-
bination of viewpoints at one point in a sequence and ig-
nore some of the viewpoints at others. In Sec. 2.4 we de-
scribe the specific generative N+ operations that we use in
detail.

An illustration of possible features constructed in this
way is given in Fig. 1. Here, we used pitch, interval and
contour (P, I, C in Tab. 1) as viewpoints. The last tone
in the sequence, the rightmost G5, is to be predicted and

has time index ¢ = 0. As indicated by the colored bor-
der, features evaluate to true (or 1) if they match the
data and to false (or 0) otherwise. In the top row, the
basis features b(;—_5 1—4), b(c=+1,1=2)> O(P=79,4=1) and
b(p=74,1—0) are depicted. Note that interval and contour
features not only depend on the pitch at time ¢ but addi-
tionally on the previous pitch at time ¢ — 1. By concatenat-
ing basis features from a single viewpoint we can construct
classical n-gram features, as illustrated for a pitch n-gram
feature in the middle row, which indicates the pitch se-
quence 72,67,76,77,79,79. If we combine basis features
from different viewpoints in a non-contiguous way, we end
up with a generalized n-gram feature, as shown in the bot-
tom row. This feature indicates a sequence that starts with
a 5-semitone step down, followed by an arbitrary tone from
which it rises by an arbitrary interval, again followed by an
arbitrary tone, and finally terminates on a D5. As the ac-
tual sequence terminates on a G5 this feature evaluates to
false/0 in this specific case.

2.3 Anchor Features

Anchor features allow to incorporate the concept of tonic
and mode, that is key, into our model. They essentially are
interval features where the value is not defined with respect
to the previous tone but with respect to an anchor tone that
may be computed based on any information available at
prediction time.

We use three kinds of anchor features that introduce an
increasing amount of prior knowledge about tonal music,
as listed in the bottom part of Tab. 1. The F; features use
the t" tone of the current piece as reference tone, which
is trivial to compute, does not change during the piece and
ignores the mode. In many cases the tonic is among the
first tones of a piece. A more sophisticated approach is to
estimate the tonic based on all tones heard so far using the
key-finding algorithm by Krumhansl [11] with parameters
from [34]. This is realized in the T features, which may
thus change during a piece (even though a change usually
only occurs within the first couple of tones) but still ignore
the mode. As the employed key-finding algorithm also es-
timates whether the piece is in major or minor mode it is
straightforward to include this distinction, which is real-
ized in the K features. It is interesting to note that in con-
trast to n-gram features, which have an arbitrary yet fixed
length, anchor features incorporate information from the
entire history dating back to the very first tone in a piece.

Just as with viewpoint features it is possible to form log-
ical conjunctions of anchor features (anchored generalized
n-gram features), however, in this work we confine our-
selves to including only single (unigram) anchor features.

2.4 N7 Operation

In this section we describe the different generative N+ op-
erations we use to search through the space of generalized
n-gram features. The role of the N T operation is to sug-
gest new candidate features that are included in the feature
set if they improve the model (see Sec. 2.1). Our N op-
erations will inject new basis features (unigrams) and sug-



Abbrev. Name Value Range Description
2w P pitch P MIDI pitch of the current note
'é g I interval T pitch difference between current and previous note
£ s C contour {-1,0,1} sign of the interval
> B X extended contour {—2,—1,0,1,2} like C but £2 for intervals larger than £5 steps
5 8 F; it" in piece A pitch differences to the i*" tone in the current piece
é = T tonic {0,...,11} octave invariant pitch difference to the tonic
< £ K key {maj, min} x {0,...,11} like T but separate for major and minor keys

Table 1. Set of employed basis features. P corresponds to the prediction alphabet, that is, the set of possible MIDI pitches.

Z ={a—bla,be P} is the set of all possible intervals in P.

gest new candidates by taking existing features and adding
a new basis feature via logical conjunction. In general,
we will apply a combination of multiple N ' operations to
learn our models.

More precisely, we write £ to refer to an N operation
that adds all basis features b, g) € B¢ of the correspond-
ing viewpoint for time zero to the feature set. Whether
the symbol ¢ refers to the viewpoint or the corresponding
N7 operation should be clear from context or is explicitly
stated otherwise. Likewise, the operators F;, T, and K add
the corresponding anchor features to the feature set. We
write £* for an N T operation that expands existing fea-
tures by adding another basis feature from the correspond-
ing viewpoint. The &* operation ignores features corre-
sponding to viewpoints other than £. When applying the
&* operation we implicitly assume that the £ operation is
also applied (after £*) without explicitly stating it.

Our £* operations come in two versions, as backwards
expansion for the LTM and as forwards expansion for the
STM.

For backwards expansion (LTM), in the i*" iteration of
feature expansion, £* expands all existing features with all
basis features b(,, ;) € B¢ with time ¢. That is, if we were
not to remove any features from the set, after n iterations of
backwards expansion, £* would have constructed all possi-
ble generalized n-gram features (with and without “holes”)
for alphabet X.

For forwards expansion (STM), £* first shifts all exist-
ing features by one time step to the past and then expands
them with all basis features b, o) € Bx for time zero. If
we were not to remove any features, after n iterations of
forwards expansion, £€* would have constructed all possi-
ble non-generalized n-gram features (only those without
“holes”) for alphabet X.

Backwards and forwards expansion take into account
the different learning scenarios for LTM and STM. For
the LTM all data is known from the beginning and back-
wards expansion successively suggests n-gram features of
increasing context length until the model stops improving.
In contrast, for the STM new data keeps coming in and
we construct n-gram features on-the-fly by performing for-
ward expansion once per time step (see Sec. 3). This en-
sures that (1) short n-gram features can be rebuilt from
scratch to account for new data and (2) if an existing n-
gram feature captures a motive in the piece, all possible

continuations are considered as new candidate features in
the next time step.

2.5 Regularization

The purpose of the regularization terms p(©) in the PuLse
objective is twofold: (1) It limits growth of the feature set
via Lj-regularization. (2) It implements a prior/bias, which
shapes the model characteristics and is a means to prevent
overfitting. We use a regularization of the form

p(©) = 3 107100, () + 10520 (5)] . @

feF

where pr, (f) and pr,(f) compute the L; and Lo regu-
larization independently for each feature f. For the L;-
regularization in our LTM we follow the rationale that the
further back a note lies in time, the less impact it has on
the prediction of the current note. This means that longer
context lengths risk to overfit on the training data and
should be regularized more strongly. We did not observe
a significant improvement from applying an additional Lo-
regularization in the LTM and use

pr,(f) = A e/e Q)
pr,(f) =0, (6)

where 7y is the temporal extent of feature f (i.e. the max-
imum time index of the basis features), ¢ determines how
quickly the regularization kicks in for increasing tempo-
ral extent, and \; determines the overall regularization
strength. For the STM we use

PL,y (f) =

LTM:

1 e—t/rl eTf/E (7)

STM:
pe e 8)

which implements the same idea with two crucial modifi-
cations: (1) The overall regularization strength decays ex-
ponentially as more data becomes available, where ry /o
are the decay rates and ¢ is the current time index in the
song during online training of the STM. (2) We use an ad-
ditional Lo-regularization, which impedes sparsity but was
found to improve the STM performance especially in the
initial phase.

The structure of these regularization functions was the
result of preliminary runs. Parameters are chosen as de-
scribed in Sec. 3.



2.6 Combining LTM and STM

LTM and STM are combined by computing a weighted
arithmetic mean of their predictive distributions [25]

ZmeM WmPm (‘T|y)
z:meﬂluh”

p(zly) o €))

where M is the set of available models, which in princi-
ple may contain more than just two models. The weights
are computed based on how “certain” a given model is, as
measured by the entropy of its predictive distribution

— Y sex logpm(aly)] ™’
log | X ’

(10)

Wy =

where division by log | X'| (the maximum possible entropy)
ensures that weights are in [0, 1], and b > 0 is a bias pa-
rameter that allows to shift weights towards models with
lower entropy.

3. EXPERIMENTS

We evaluate our models on a corpus of eight symbolic mu-
sic datasets, as used in [1-3, 24]. The corpus consists
of 1009 monophonic folk melodies from different coun-
tries and styles as well as the soprano lines of 185 Bach
chorales. The data is parsed from the **kern format using
the Python toolkit music21 [6]. As input for our model, the
melodies are represented as monophonic chromatic pitch
sequences with ties being merged. Performance is indi-
cated by the model cross-entropy measured in bits. We
perform 10-fold cross-validation on each corpus separately
using the same folds as [2, 24]. The overall model perfor-
mance is computed by first computing the cross-entropy
for the test set in each cross-validation fold, then averag-
ing over the folds within one corpus, and finally averaging
over the different corpora (this is the same approach as in
previous work).

Optimization of the feature weights is done using Ada-
Grad [7] with a constant learning learning rate of n = 1
and initial gradient squared accumulators of g = 10719,

LTM: We evaluate our LTM using the different N+ op-
erations listed in Tab. 2. Our best performing LTM is com-
pared to the state-of-the-art (see Tab. 3). The feature set is
expanded until less than 1% of the features change. The
LTM hyperparameter ¢ was fixed to e = 1/In(2) ~ 1.44
in preliminary runs while \; is optimized for every cross-
validation fold by leaving out 10% of the training data as
validation set and performing a Gaussian process based
optimization for A\; € [1072,107°] using the framework
Scikit-Optimize ! .

STM: For the STM we combine the N T operations P, I*
and F;. The feature set is expanded once per time step fol-
lowed by an optimization of the feature weights until con-
vergence. The hyperparameters were set to the following
values based on preliminary runs: A\; = 1075, r; = 100,
€=1/In(1.2) ~ 548, Ay = 1072, 7y = 8.

Ihttps://scikit-optimize.github.io

PuLse-LTM
C - 2.701
X* - 2.692
- 2.692
P | I* F, 2.620
C* | F1FyF3 | 2.602
T 2.586
K 2.547

Table 2. Performance of Purse-LTM for different configu-
rations.

| LTM STM Hybrid
PULSE | 2.547 3.094 2.395
RTDRBM [3] 2712 3.363 2.421
n-gram [24] 2.878 3.139 2.479

Table 3. Comparison of best performing Purse, RTDRBM,
and n-gram models.

Hybrid: For the hybrid model we combine our
(PI*C*K)-LTM with our (PI*F;)-STM. We also test the
combination of our LTM with an (C*I) n-gram STM model
from the IDyOM-framework [21]. The bias parameter b
was determined over the grid b € {0, 1,2, 3,4, 5,6, 16, 32}
on the training set of each cross-validation fold.

4. RESULTS

The chief results are that

1. Our Purse-LTM outperforms the current state-of-
the-art, RTDRBM [2].

2. Our Purse-STM outperforms the current state-of-
the-art, X*UI n-gram [24].

3. Our LTM/STM-hybrid model outperforms the cur-
rent state-of-the-art, RTDRBM/n-gram [3].

4. The discovered features and learned weights provide
musically interpretable insights into the model.

‘We will now discuss these results in more detail.

4.1 LTM Configurations

In Tab. 2 we list the results for our different LTM con-
figurations. In preliminary runs we identified PI*C to
be the minimum setup for outperforming previous work.
Performance is improved by expanding contour features
(C — C*) in addition to intervals, enabling the model to
learn melody contours in addition to transposition invariant
motifs. Interestingly, the distinction of small and large in-
tervals using extended contour features, X*, which is con-
sidered relevant in music theory, did not result in further
improvement.

As expected, incorporating an increasing amount of
prior knowledge about tonic and key via Fy, F1FsF3, T,



and K, respectively, led to significant improvements. Our
best LTM configuration, PI*C*K, significantly improves
over the current state-of-the-art, with the performance gain
being of the same magnitude as was achieved by the cur-
rent state-of-the-art RTDRBM [2] versus n-grams [24].

It is interesting to note that the algorithm for comput-
ing T and K involves a combination of music-theoretical
insights and empirical tone profiles. An important future
research question is how this can be generalized and made
accessible to learning from corpus data.

4.2 STM Performance

In Tab. 3 we compare the PI*F; PurLse-STM with the best
RTDRBM [3] and n-gram STM [24]. To our knowl-
edge we present the first model that outperforms the well-
established n-gram STM for the task of sequential pre-
diction of symbolic monophonic music. We assume that
an even better performance is achievable by performing
a more thorough (yet very expensive) optimization of the
STM hyperparameters.

4.3 Hybrid

Combining the Purse-LTM with the Purse-STM gives a
performance boost, outperforming current state-of-the-art
hybrids (see Tab. 3). The combination of our PuLse-LTM
with an C*I n-gram STM from the IDyOM-framework
yields an interesting result: While the n-gram STM alone
performs worse (3.152 bits) than our Purse STM the
corresponding hybrid displays a better performance of
2.365 bits. We conjecture that the n-gram STM has com-
plementary properties to our PuLse-based model and there-
fore is able to contribute valuable missing information.
The best performing LTM/STM-hybrid on this corpus thus
is the combination of our PI*C*K Purse-LTM and the C*1
n-gram STM.

4.4 Discussion of Features

While an extensive discussion of all features for the dif-
ferent corpora is beyond the scope of this paper, we show
a qualitative plot of the weights for a subset of features
learned by our PI*C*K Purse-LTM from the Bach chorale
corpus in Fig. 2. First, we see that the pitch features (P)
describe a general preference for tones in the middle reg-
ister. For the interval features (I) we restrict ourselves to
length-one features, which show a preference of small (es-
pecially descending) steps over large steps. This is in ac-
cordance with general music-theoretic principles of voice
leading. Note that a tritone step (£6 semitones) is partic-
ularly discouraged. The anchor features (K) model sep-
arate tone profiles for major (M) and minor (m) modes.
We empirically confirm a preference for relevant in-scale
tones: tonic (0), major third (4)/minor third (3) and fifth
(7), whereas the out-of-scale tones minor second (1), mi-
nor third(3)/major third (4), tritone (6), and minor seventh
(10)/major seventh (11) are discouraged.

During training of the model, a total of 5851 features
was temporally included from which 322 remained in the
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Figure 2. Qualitative plot of the feature weights for P and I
features of length one as well as K features, learned based
on the Bach chorales. For I and K features middle C is
chosen as reference tone as marked by the circles.

final model. This underlines the relevance of performing
both feature expansion and selection, which allows PuLsE
to scale to very large feature spaces.

S. CONCLUSION

We applied the PuLse framework to the problem of learning
a model for sequential prediction of symbolic monophonic
music. Our models outperform the current state-of-the-art
for long-term, short-term and hybrid models on a standard
benchmark corpus of folk melodies and Bach chorales. At
the same time our approach affords interpretable models
that use an explicit set of musically relevant features. The
size of the processed feature spaces are challenging for
classical feature expansion methods and our method has
the potential to scale to even larger spaces. This becomes
particularly relevant for an application to polyphonic mu-
sic and modeling of harmony as well as for including more
complex viewpoints.

This is the first application of the Purse framework
for modelling music, which provides excellent results and
opens up a number of possible directions for further inves-
tigation. We therefore consider PULSE to be a promising
framework for the development of a unified architecture
for modelling music.
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