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Abstract

A core challenge in interactive learning is to ask the right questions for learning
effectively. The field of active learning and optimal experimental design provides
some general principles like striving to minimize the uncertainty of the relevant
quantities. A naive application of these principles in practical applications, however,
may lead to a poor performance. We show that the standard approach of iteratively
minimizing the expected entropy can get trapped in strong but false beliefs. We
present an alternative measure — maximum expected cross-entropy — that actively
avoids these pitfalls and substantially outperforms alternative measures in several
exemplary simulations as well as a real-world robot application.

Information gain - Experimental design - Exploration - Active learning - Cross entropy - Robotics

1 Introduction

An important task in interactive learning is to decide what information should be gathered. Collecting
new samples is usually expensive because it involves interaction with a human agent. Therefore,
samples should be chosen such that a robust convergence is facilitated with as little samples as
possible, which is the goal of active learning and optimal experimental design.

Two typical aspects in practical applications are that (1) the involved spaces are large and high-
dimensional so that optimal solutions become intractable to compute and that (2) a high amount
of prior knowledge about the problem is incorporated in order to solve the task. In active learning,
due to the first aspect, one is usually forced to fall back to greedy iterative procedures instead of
optimizing the experimental design globally. We show that especially in conjunction with the second
aspect this may cause severe problems if the standard active learning objectives are naively applied:
Instead of speeding up convergence (as compared to random sampling) the learning process may
actually be slowed down.

We discuss the origin of this failure, which roughly speaking consists of myopically seeking to
reinforce any strong belief irrespective of whether this serves learning in the long-run. We then
suggest and discuss an alternative measure, maximum expected cross-entropy, that explicitly addresses
this problem and show its superiority in several experiments.

We will first review related work in Sec. 2. In Sec. 3 we formally define the interactive learning
problem, discuss the shortcomings of the minimum expected entropy approach (Sec. 3.2), and
introduce our MaxCE measure (Sec. 3.1). In Sec. 4 we present empirical evaluations showing the
advantage of MaxCE in several simulations as well as a real-world robot application.
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2 Related Work

The problem we consider is closely related to that of optimal experimental design, where the goal
is to design a series of experiments such that they are most informative. The field was coined by

[ ] and [ ] give an overview of the method and its various
utility functions. The most common approach is to maximize the expected Shannon information
[ , ] or equivalently minimize the expected entropy (MinH) of the posterior distribution

of the variables of interest. Recently Bayesian experimental design has regained interest due to an
efficient implementation that exploits the equivalence of MinH to a mutual information [

, ]. In practical applications it is usually computationally infeasible to optimize the whole
series of experiments, so that instead only the very next experiment is optimized in a greedy iterative
procedure. Even though it is common to also use MinH in the iterative setting this may be detrimental
under certain circumstances, as we discuss more closely in Sec. 3.1.1. Our suggested measure MaxCE
addresses exactly these shortcomings of MinH for iterative interactive learning.

Another field that is not strictly separated from optimal experimental design is that of active learning.
The emphasis here is less on optimizing a series of experiments for learning latent properties but more
on itertively choosing samples to improve the predictions of a model. Active learning comprises a
variety of methods [ , ] and is successfully applied on a wide range of problems [

, ]. One of the most common active learning strategies, called uncertainty sampling,
is a special case of MinH, as we discuss in Sec. 3.1.2. The main problem with uncertainty sampling
is that it focuses on improving predictions whereas our goal is to learn latent properties of the model.
We compare these two cases in our experiments and show that, while not initially designed for that
purpose, our MaxCE measure may also be used to boost uncertainty sampling.

The task of model selection is a special case of learning a latent property, namely which of the
potential models is the best for a given set of training data. Well known methods are to rate models
based on their likelihood ratios, as does Akaike’s Information Criterion [ s s

, ] or the Bayesian Information Criterion [ , , s 1,
or to rate models by their generalization error using cross-validation [ ]. However, all
these model selection techniques rely on a fixed data set and do not provide criteria for selecting new
samples, so that they are not suited for interactive learning.

Query-by-committee (QBC) [ , ] is an approach for active model selection that
chooses new samples such that the competing models (or hypotheses) disagree most. As a measure
of disagreement [ ] suggest to use the sum of KL-divergences between

the prediction of each model and the mean prediction of all models. A major conceptual difference
between QBC and our MaxCE method is that QBC is based on the current predictions of the models
whereas MaxCE considers the effect a new sample has on the latent property we are actually interested
in. As a consequence QBC can only be used for selecting amongst a finite number of models whereas
MaxCE can be applied to any (possibly continuous) latent variable. In our experiments, we compare
against QBC in the discrete setting.

In spirit most closely related to our MaxCE approach are expected model change methods such as the
expected gradient length (EGL) algorithm [ , ]. The idea here, just as with MaxCE,
is to find samples that have the highest impact on the quantity of interest. In a way, our MaxCE
method is the Bayesian version of the EGL approach: While EGL maximizes the change of the
model parameters MaxCE maximizes the change of the corresponding posterior distribution. EGL
can therefore be interpreted as an approximation of MaxCE for the case of narrow unimodal posterior
distributions of a continuous latent variable. EGL is thus not suited for discrete latent properties
while MaxCE is.

3 Method

Let z, y, D, f, 8 be random variables (also cf. Fig. 1). At each iteration of the interactive learning
process D is the set of known query-label pairs, x is the next query that is to be chosen, and y is the
corresponding label. Labels are drawn from a distribution p(y|x, f) determined by x and f, while
the distribution of f is in turn determined by the latent parameters 6. As we are interested in learning
the latent properties § we have to marginalize out f.
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Figure 1: Graphical model of the interactive learning process. (left): D is the set of known query-label
pairs, x is the next query that is to be chosen, and y is the corresponding label. Labels are drawn from
a distribution p(y|x, f) determined by x and f, while the distribution of f is in turn determined by
the latent parameters 6. (right): The same model after marginalizing out f.

A general approach from active learning and optimal experimental design is to choose an objective
that should be optimized at the end of a sequence of interactions. The must common objective, which
we discuss in Sec. 3.1, is to minimize the expected entropy (MinH) of the distribution of interest.
Following this approach requires optimizing over all combinations of all possible outcomes of the
sequence, which usually makes it computationally intractable in practice. One therefore has to fall
back to myopically optimizing only the next sample in the sequence. However, naively optimizing
the final objective in each iteration does by no means result in optimizing it in the long run, as we
discuss in Sec. 3.1.1.

A common special case that we discuss in Sec. 3.1.2 is that we want to predict y and therefore learn
about f. The more challenging task that we focus on in this paper, however, is to infer the latent
properties 8 of our model. Interestingly, our experiments suggest that even if the final goal is to learn
about f, explicitly learning about § may be beneficial.

In Sec. 3.2 we introduce an alternative objective — maximizing the expected cross-entropy (MaxCE) —
that addresses the shortcomings of MinH and is explicitly designed for learning latent properties in
an iterative setting.

3.1 Minimum Expected Entropy

The intuition behind MinH is that the entropy of a distribution, as a measure of uncertainty, indicates
how much we know about the underlying quantity. Therefore, striving for a minimal entropy, that is,
a maximum amount of information seems natural. While this is rational as a final objective and also
works well in an iterative setting for learning about the predictive distribution f (Sec. 3.1.2) it may
severely fail when trying to learn latent properties (Sec. 3.1.1), which is exactly the problem we are
concerned with. For learning about the latent properties 6, following MinH, a new query x is selected
as

P — / p(ylz, D) Dicw (p(01D, . z) | p(8D)) (1)
z Y

— argmin / p(yle, DYH[p(6|D, 7, y)] - @)
® y

Note that minimizing the expected entropy of the posterior distribution is identical to maximizing the
KL-divergence from the posterior to the prior distribution, however, due to taking the expectation
over y the dependency on the prior distribution drops out.

3.1.1 Failure in the Iterative Setting

As mentioned above, following an objective greedily in an iterative setting does not guarantee its
optimization in the long run. Under certain conditions, for instance, for submodular functions, it is
possible to prove bounded optimality. However, while the entropy as a function of a set of random
variables actually is submodular, the expected entropy of the posterior as a function of the set of
known samples is not.

Greedily minimizing the expected entropy may effectively slow down convergence even when
compared to random sampling as can be observed in our robot experiments (Sec. 4.4). This may



happen if the learner temporally has a strong but false belief where greedily seeking for a small
entropy avoids evidence against this belief since the entropy would temporally increase before settling
at its global minimum.

A strong but false belief may come about in several ways. First, with noisy samples there is always
the chance of the current samples supporting a false belief. Even though support for the correct belief
is more likely this possibility cannot be ignored. Second, especially in practical applications it is
important to include strong prior knowledge about the problem in order to make it tractable. As
this prior knowledge is provided by humans it may well be erroneous and we want our interactive
learning methods to be robust against such mistakes. Also, event if the priors are generally correct
we do not want our method to fail in the unlikely but possibly highly relevant cases where the prior
assumptions do not apply. Exactly this scenario is described in our robot experiment in Sec. 4.4.

3.1.2 Uncertainty Sampling

In many practical applications we are not necessarily interested learning the latent properties 6 but
rather in learning the predictive distribution determined by f. This means that the space we draw
our samples from is the same space that we want to minimize our uncertainty over. Additionally, a
common assumption is that the labels y at different query locations z are only locally correlated, as
is the case when using nearest-neighbor methods such as locally weighted regression or Gaussian
processes with finite-width kernels. In this case, the uncertainty measure can be computed locally
and is usually expected to decrease by sampling at that location. For learning the about f, one can
therefore resort to a much simpler approach, called uncertainty sampling, which always draws new
samples at the most uncertain locations. While this case is not the focus of our paper, our experiments
suggest that our MaxCE measure may be used to speed up learning of f. To this end we combine the
two measures as

Omiz = aOMazCE + (1 - a)OUS 5 (3)

where the combined objective O,,;, is a linear mixture of the MaxCE objective O s.,cp and the
uncertainty sampling objective Oy g with mixing parameter .

3.2 Maximum Expected Cross-Entropy

For learning about the latent properties § we suggest to select new queries as

— / p(ylz, D) Diw.(p(61D) || p(91D, . 2) 4
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Y

that is, we suggest to maximize the expected cross-entropy or equivalently the expected KL-divergence
between prior and posterior belief. Note that Eq. (1) and Eq. (4) only differ in the direction of the
KL-divergence, which, however, has the effect that in our MaxCE measure the dependence on the
current prior belief does not vanish when taking the expectation. The intuition behind our MaxCE
measure is to choose samples such that they maximally change the current belief, which avoids a
premature convergence to local optima.

4 Experiments

We test our method on a synthetic classification and regression tasks (Sec. 4.2), a real world regression
task with computer tomography data (Sec. 4.3), as well as in a robotic experiment both in simulation
and on the real system (Sec. 4.4).

4.1 General Setup

In each experiment the task of the agent is to uncover latent model parameters. In the classification
and regression tasks this is to uncover the best kernel for a Gaussian process. In the robotic task the
robot has to uncover the dependency structure of various locks, for instance, that a key is locking a
drawer. In all cases the latent property is a discrete random variable.
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Figure 2: The mean performance of the different methods for the classification tand regression tasks.

In all experiments we compare our MaxCE method Eq. (5) to the classical MinH approach Eq. (2)
and random sampling. For the classification and regression tasks we additionally compare against
query-by-committee (QBC) [Seung et al., 1992, McCallum and Nigam, 1998], uncertainty sampling
(Sec. 3.1.2), and a mixture of MaxCE and uncertainty sampling Eq. (3). The mixing coefficient,
which was found by a series of trial runs, was o = 0.5 for both synthetic data sets and o = 0.3 for
the CT slices data set.

We measure the learning progress of the latent properties 6 in terms of the posterior entropy
H(p(8|D)). Progress in predictive performance is measured in terms of the classification accu-
racy for classification and the mean squared error for regression. For the robotic experiments we
additionally show the mean number of correctly classified dependencies.



4.2 Synthetic Data

We test our method in a 3D-regression and a 3D-classification task. The setup for both experiments is
essentially the same: A ground truth Gaussian Process (GP) is used to generate the data. The kernel
of the ground truth GP is randomly chosen to depend either on all three dimensions (z, y, z), only
a subset of two dimensions (x,y), (y, z) or (z, z), or on only one dimension (x), (y) or (z). The
latent property 6 is thus discrete and can take seven different values. One run consists of each method
independently choosing fifty queries one-by-one from the same ground truth model. After each query
the corresponding candidate GP is updated and the posterior over € is computed. Fig. 2(a), 2(b), 2(c)
and 2(d) show the mean performance over 100 runs including error bars.

On the synthetic data MaxCE significantly outperforms all other tested methods in terms of the
posterior entropy (Fig. 2(a) and 2(c)). In terms of classification accuracy and predictive error
(Fig. 2(b) and 2(d)) MaxCE performs poorly, which is the expected result since this is not its objective
(the same is true for MinH). This is because their objectives are not designed for prediction but for
hypothesis discrimination. However, the mixture of MaxCE and uncertainty sampling outperforms
all other methods (including pure uncertainty sampling), which suggests that explicitly leaning about
6 is valuable even if the final objective is improving predictive performance.

4.3 CT-Slice Data

The CT-slice data is a high dimensional (384 dimensions) real world data set from the machine
learning repository of the University of California, Irvine [ , ]. The task on
this set is to find the relative position of a computer tomography (CT) slice in the human body based
on two histograms measuring the position of bone (240 dimensions) and gas (144 dimensions). We
used three GPs with three different kernels: a y-exponential kernel with v = 0.4, an exponential
kernel, and a squared exponential kernel. Fig. 2(e) and 2(f) show the mean performance over 40 runs
on the CT slice data set.

In the CT slice data set none of MaxCE, MinH, and QBC minimize the entropy quickly (Fig. 2(e)).
This might be the case because none of the provided models is close to the true generating process,
so that the true posterior distribution does not actually have a low entropy. In contrast, for uncertainty
sampling, the mixture of MaxCE and uncertainty sampling, and random sampling the entropy
converges much more rapidly. Concerning the predictive performance (Fig. 2(f)) uncertainty sampling
and the mixture of MaxCE and uncertainty sampling perform equally well.

4.4 Robot Experiment: Joint Dependency Structure Learning

In our robot experiment we use MaxCE to uncover dependencies between different objects in the
environment. These dependencies are model by the latent parameter 6. In earlier work we have
shown how such exploration can be driven by information theoretic measures [ , ]. For
more information on our model refer to [ s ]. An important detail, however, is that
we make the strong prior assumption that most objects are independent. This means that we start
off with a low-entropy belief over 6 and want to learn the exceptions to that rule, that is, among all
independent objects we want to find the few that are not.

We conducted two versions of this experiment. A quantitative simulated version with three pieces of
furniture and a qualitative real-world experiment on a PR2 robot (see Fig. 3) that is presented with a
lockable drawer.

Fig. 4 shows the results of 50 trial of the simulated version of the experiment. MaxCE initially
increases entropy as compared to the initial belief over 6 before settling on a the final low-entropy
belief, which goes along with a monotonic improvement in classification quality. Random sampling
shows the same qualitative performance but on a much slower time scale and therefore does not reach
the low-entropy belief. MinH, however, fails at making progress in both reaching a low-entropy belief
and correctly classifying dependencies.

The real world robotic experiment resembles these results (see Fig. 5). The robot quickly uncovers
the latent dependency structure. Notably the distribution of the independent joint does not change.
This comes from the fact that the robot cannot find strong evidence of independence as long as it
has not collected samples within the whole joint space of the other joint. To understand this note
that the locking state from the key never changes, i.e., it is always movable. So there is no evidence



Figure 3: A PR2 robot tries to uncover the dependency structure of a typical office cabinet by
exploring the joint space of the key and the drawer.
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Figure 4: Results of simulation experiments. Left we show the sum of entropies over all dependency
beliefs. Right we show the mean correctly classified joints with an arbitrary decision boundary at 0.5.
(Similar figure as in [Kulick et al., 2015].)

against the possibility of a dependency from the drawer to the key, since there might be a position
of the drawer which locks the key. Only if the agent has seen every possible state of the drawer it
can be sure that the key is independent. Since only a handful of drawer states are observed, the prior
distribution almost preserves during the whole experiment.

5 Conclusion and Outlook

The presented results strongly suggest that for uncovering latent parameters in an iterative setting
our newly developed strategy of maximizing the expected cross-entropy (MaxCE) is superior to the
classical objective of minimizing the expected entropy (MinH). The results on predictive performance
additionally demonstrate a successful application of MaxCE for improving predictive performance
by mixing it with an uncertainty sampling objective. While the employed mixing strategy is rather
simple this might be an interesting subject for further research.
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